4.8 Article

Neuronal activity is required for the development of specific cortical interneuron subtypes

期刊

NATURE
卷 472, 期 7343, 页码 351-U116

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09865

关键词

-

资金

  1. Patterson Trust
  2. National Institutes of Health, National Institute of Mental Health [5RO1MH068469-08, 2R01MH071679-09]
  3. National Institute of Neurological Disorders and Stroke [5R01NS039007-1]
  4. New York Stem Cell Science State [NGSG-130]
  5. Simons Foundation

向作者/读者索取更多资源

Electrical activity has been shown to regulate development in a variety of species and in various structures(1), including the retina(2-4), spinal cord(5,6) and cortex(5). Within the mammalian cortex specifically, the development of dendrites and commissural axons in pyramidal cells is activity-dependent(7,8). However, little is known about the developmental role of activity in the other major cortical population of neurons, the GABA-producing interneurons. These neurons are morphologically and functionally heterogeneous and efforts over the past decade have focused on determining the mechanisms that contribute to this diversity(9-11). It was recently discovered that 30% of all cortical interneurons arise from a relatively novel source within the ventral telencephalon, the caudal ganglionic eminence (CGE)(11,12). Owing to their late birth date, these interneurons populate the cortex only after the majority of other interneurons and pyramidal cells are already in place and have started to functionally integrate. Here we demonstrate in mice that for CGE-derived reelin (Re)-positive and calretinin (Cr)-positive (but not vasoactive intestinal peptide (VIP)-positive) interneurons(12,13), activity is essential before postnatal day 3 for correct migration, and that after postnatal day 3, glutamate-mediated activity controls the development of their axons and dendrites. Furthermore, we show that the engulfment and cell motility 1 gene (Elmo1)(14), a target of the transcription factor distal-less homeobox 1 (Dlx1)(15), is selectively expressed in Re+ and Cr+ interneurons and is both necessary and sufficient for activity-dependent interneuron migration. Our findings reveal a selective requirement for activity in shaping the cortical integration of specific neuronal subtypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据