4.8 Article

Molecular coupling of Tsix regulation and pluripotency

期刊

NATURE
卷 468, 期 7322, 页码 457-U287

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09496

关键词

-

资金

  1. Institut Pasteur
  2. Royal Society
  3. Centre National de la Recherche Scientifique
  4. Agence Nationale de la Recherche [05-JCJC-0166-01, 07-BLAN-0047-01]
  5. EU Epigenome Network of Excellence
  6. INSERM
  7. European Research Council
  8. Wellcome Trust
  9. EU
  10. Medical Research Council
  11. Medical Research Council [G0700711B] Funding Source: researchfish

向作者/读者索取更多资源

The reprogramming of X-chromosome inactivation during the acquisition of pluripotency in vivo and in vitro(1) is accompanied by the repression of Xist(2), the trigger of X-inactivation(3), and the upregulation of its antisense counterpart Tsix(4). We have shown that key factors supporting pluripotency-Nanog, Oct4 and Sox2-bind within Xist intron 1 in undifferentiated embryonic stem cells (ESC) to repress Xist transcription(5). However, the relationship between transcription factors of the pluripotency network and Tsix regulation has remained unclear(5,6). Here we show that Tsix upregulation in embryonic stem cells depends on the recruitment of the pluripotent marker Rex1, and of the reprogramming-associated factors Klf4 and c-Myc, by the DXPas34 minisatellite associated with the Tsix promoter. Upon deletion of DXPas34, binding of the three factors is abrogated and the transcriptional machinery is no longer efficiently recruited to the Tsix promoter. Additional analyses including knockdown experiments further demonstrate that Rex1 is critically important for efficient transcription elongation of Tsix. Hence, distinct embryonic-stem-cell-specific complexes couple X-inactivation reprogramming and pluripotency, with Nanog, Oct4 and Sox2 repressing Xist to facilitate the reactivation of the inactive X, and Klf4, c-Myc and Rex1 activating Tsix to remodel Xist chromatin(7-10) and ensure random X-inactivation upon differentiation(1). The holistic pattern of Xist/Tsix regulation by pluripotent factors that we have identified suggests a general direct governance of complex epigenetic processes by the machinery dedicated to pluripotency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据