4.8 Article

xnd-1 regulates the global recombination landscape in Caenorhabditis elegans

期刊

NATURE
卷 467, 期 7317, 页码 839-U103

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09429

关键词

-

资金

  1. Carnegie Institution of Washington, NIH [K01AG031296]
  2. MWRI
  3. NSERC

向作者/读者索取更多资源

Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots(1-3) and significant variation in hotspot usage exists between and among individuals(4). This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/or chromosome domain organization(1,5-9). Chromosomes show different frequencies of nondisjunction (NDJ)(10), reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据