4.8 Article

A strong ferroelectric ferromagnet created by means of spin-lattice coupling

期刊

NATURE
卷 466, 期 7309, 页码 954-U72

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09331

关键词

-

资金

  1. National Science Foundation [DMR-0507146]
  2. National Science Foundation through MRSEC [DMR-0520404, DMR-0820404, DMR-0820414]
  3. Czech Science Foundation [202/09/0682]
  4. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [820404, 820414] Funding Source: National Science Foundation

向作者/读者索取更多资源

Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism(1,2). Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena(1-5) are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic-or electric-field-induced multiferroics(6-8). Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today(1,2). Recently, however, a new route to ferroelectric ferromagnets was proposed(9) by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO3, was predicted to exhibit strong ferromagnetism (spontaneous magnetization, similar to 7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, similar to 10 mu C cm(-2)) simultaneously under large biaxial compressive strain(9). These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin-lattice coupling mechanism(10). Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition(11) for creating multiferroics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据