4.8 Article

DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes

期刊

NATURE
卷 460, 期 7252, 页码 250-253

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature08116

关键词

-

资金

  1. US National Science Foundation [CMS-060950]

向作者/读者索取更多资源

Single-walled carbon nanotubes (SWNTs) are a family of molecules that have the same cylindrical shape but different chiralities(1). Many fundamental studies and technological applications(2) of SWNTs require a population of tubes with identical chirality that current syntheses cannot provide. The SWNT sorting problem-that is, separation of a synthetic mixture of tubes into individual single-chirality components-has attracted considerable attention in recent years. Intense efforts so far have focused largely on, and resulted in solutions for, a weaker version of the sorting problem: metal/semiconductor separation(3,4). A systematic and general method to purify each and every single-chirality species of the same electronic type from the synthetic mixture of SWNTs is highly desirable, but the task has proven to be insurmountable to date. Here we report such a method, which allows purification of all 12 major single-chirality semiconducting species from a synthetic mixture, with sufficient yield for both fundamental studies and application development. We have designed an effective search of a DNA library of similar to 10(60) in size, and have identified more than 20 short DNA sequences, each of which recognizes and enables chromatographic purification of a particular nanotube species from the synthetic mixture. Recognition sequences exhibit a periodic purine-pyrimidines pattern, which can undergo hydrogen-bonding to form a two-dimensional sheet, and fold selectively on nanotubes into a well-ordered three-dimensional barrel. We propose that the ordered two-dimensional sheet and three-dimensional barrel provide the structural basis for the observed DNA recognition of SWNTs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据