4.8 Article

Surface hydrophobin prevents immune recognition of airborne fungal spores

期刊

NATURE
卷 460, 期 7259, 页码 1117-1121

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature08264

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. EU-STREP [LSHB-CT-2004-511952, MANASP LSGBH37899]
  3. INSERM
  4. CNRS
  5. Universities Paris 5 and 6

向作者/读者索取更多资源

The air we breathe is filled with thousands of fungal spores (conidia) per cubic metre, which in certain composting environments can easily exceed 10 9 per cubic metre. They originate from more than a hundred fungal species belonging mainly to the genera Cladosporium, Penicillium, Alternaria and Aspergillus(1-4). Although these conidia contain many antigens and allergens(5-7), it is not known why airborne fungal microflora do not activate the host innate immune cells continuously and do not induce detrimental inflammatory responses following their inhalation. Here we show that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response. To explore this, we used several fungal members of the airborne microflora, including the human opportunistic fungal pathogen Aspergillus fumigatus, in in vitro assays with dendritic cells and alveolar macrophages and in in vivo murine experiments. In A. fumigatus, this surface 'rodlet layer' is composed of hydrophobic RodA protein covalently bound to the conidial cell wall through glycosylphosphatidylinositol-remnants. RodA extracted from conidia of A. fumigatus was immunologically inert and did not induce dendritic cell or alveolar macrophage maturation and activation, and failed to activate helper T-cell immune responses in vivo. The removal of this surface 'rodlet/hydrophobin layer' either chemically (using hydrofluoric acid), genetically (Delta rodA mutant) or biologically (germination) resulted in conidial morphotypes inducing immune activation. All these observations show that the hydrophobic rodlet layer on the conidial cell surface immunologically silences airborne moulds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据