4.8 Article

Soft colloids make strong glasses

期刊

NATURE
卷 462, 期 7269, 页码 83-86

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature08457

关键词

-

资金

  1. US National Science Foundation
  2. Harvard University's Materials Research Science and Engineering Center
  3. Hans Werthen Foundation
  4. Wenner-Gren Foundation
  5. Knut and Alice Wallenberg Foundation
  6. Royal Society of Arts and Sciences in Goteborg
  7. Ministerio de Ciencia e Innovacion
  8. University of Almeria
  9. KAKENHI
  10. Grants-in-Aid for Scientific Research [21540416] Funding Source: KAKEN

向作者/读者索取更多资源

Glass formation in colloidal suspensions has many of the hallmarks of glass formation in molecular materials(1-5). For hard-sphere colloids, which interact only as a result of excluded volume, phase behaviour is controlled by volume fraction, phi; an increase in phi drives the system towards its glassy state, analogously to a decrease in temperature, T, in molecular systems. When phi increases above phi* approximate to 0.53, the viscosity starts to increase significantly, and the system eventually moves out of equilibrium at the glass transition, phi(g) approximate to 0.58, where particle crowding greatly restricts structural relaxation(1-4). The large particle size makes it possible to study both structure and dynamics with light scattering(1) and imaging(3,4); colloidal suspensions have therefore provided considerable insight into the glass transition. However, hard-sphere colloidal suspensions do not exhibit the same diversity of behaviour as molecular glasses. This is highlighted by the wide variation in behaviour observed for the viscosity or structural relaxation time, tau(alpha), when the glassy state is approached in supercooled molecular liquids(5). This variation is characterized by the unifying concept of fragility(5), which has spurred the search for a 'universal' description of dynamic arrest in glass-forming liquids. For 'fragile' liquids, tau(alpha) is highly sensitive to changes in T, whereas non-fragile, or 'strong', liquids show a much lower T sensitivity. In contrast, hard-sphere colloidal suspensions are restricted to fragile behaviour, as determined by their phi dependence(1,6), ultimately limiting their utility in the study of the glass transition. Here we show that deformable colloidal particles, when studied through their concentration dependence at fixed temperature, do exhibit the same variation in fragility as that observed in the T dependence of molecular liquids at fixed volume. Their fragility is dictated by elastic properties on the scale of individual colloidal particles. Furthermore, we find an equivalent effect in molecular systems, where elasticity directly reflects fragility. Colloidal suspensions may thus provide new insight into glass formation in molecular systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据