4.8 Article

Direct observation of correlations between individual photon emission events of a microcavity laser

期刊

NATURE
卷 460, 期 7252, 页码 245-U108

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature08126

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

Lasers are recognized for coherent light emission, the onset of which is reflected in a change in the photon statistics(1). For many years, attempts have been made to directly measure correlations in the individual photon emission events of semiconductor lasers(2,3). Previously, the temporal decay of these correlations below or at the lasing threshold was considerably faster than could be measured with the time resolution provided by the Hanbury Brown/Twiss measurement set-up(4) used. Here we demonstrate a measurement technique using a streak camera that overcomes this limitation and provides a record of the arrival times of individual photons. This allows us to investigate the dynamical evolution of correlations between the individual photon emission events. We apply our studies to micropillar lasers(5) with semiconductor quantum dots(2,3,6-8) as the active material, operating in the regime of cavity quantum electrodynamics(9). For laser resonators with a low cavity quality factor, Q, a smooth transition from photon bunching to uncorrelated emission with increasing pumping is observed; for high-Q resonators, we see a non-monotonic dependence around the threshold where quantum light emission can occur. We identify regimes of dynamical anti-bunching of photons in agreement with the predictions of a microscopic theory that includes semiconductor-specific effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据