4.8 Article

Capture of hydroxymethylene and its fast disappearance through tunnelling

期刊

NATURE
卷 453, 期 7197, 页码 906-U42

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07010

关键词

-

向作者/读者索取更多资源

Singlet carbenes exhibit a divalent carbon atom whose valence shell contains only six electrons, four involved in bonding to two other atoms and the remaining two forming a non- bonding electron pair. These features render singlet carbenes so reactive that they were long considered too short- lived for isolation and direct characterization. This view changed when it was found that attaching the divalent carbon atom to substituents that are bulky and/ or able to donate electrons produces carbenes that can be isolated and stored(1). N- heterocyclic carbenes are such compounds now in wide use, for example as ligands in metathesis catalysis(2). In contrast, oxygen- donor- substituted carbenes are inherently less stable and have been less studied. The pre- eminent case is hydroxymethylene, H-C-OH; although it is the key intermediate in the high- energy chemistry of its tautomer formaldehyde(3-7), has been implicated since 1921 in the photocatalytic formation of carbohydrates(8), and is the parent of alkoxycarbenes that lie at the heart of transition- metal carbene chemistry, all attempts to observe this species or other alkoxycarbenes have failed(9). However, theoretical considerations indicate that hydroxymethylene should be isolatable(10). Here we report the synthesis of hydroxymethylene and its capture by matrix isolation. We unexpectedly find that H -C-OH rearranges to formaldehyde with a half- life of only 2 h at 11 K by pure hydrogen tunnelling through a large energy barrier in excess of 30 kcal mol(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据