4.8 Article

Solid-state quantum memory using the 31P nuclear spin

期刊

NATURE
卷 455, 期 7216, 页码 1085-1088

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07295

关键词

-

资金

  1. National Security Agency [MOD 713106A]
  2. EPSRC [GR/S82176/01]
  3. CAESR [EP/D048559/1]
  4. St John's College, Oxford
  5. Royal Society
  6. US National Science Foundation [DMR-0213706]
  7. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy [DE-AC02-05CH11231]
  8. EPSRC [EP/D048559/1] Funding Source: UKRI
  9. Engineering and Physical Sciences Research Council [GR/S82176/01, EP/D048559/1] Funding Source: researchfish
  10. Direct For Mathematical & Physical Scien
  11. Division Of Materials Research [819860] Funding Source: National Science Foundation

向作者/读者索取更多资源

The transfer of information between different physical forms - for example processing entities and memory - is a central theme in communication and computation. This is crucial in quantum computation(1), where great effort(2) must be taken to protect the integrity of a fragile quantum bit ( qubit). However, transfer of quantum information is particularly challenging, as the process must remain coherent at all times to preserve the quantum nature of the information(3). Here we demonstrate the coherent transfer of a superposition state in an electron- spin 'processing' qubit to a nuclear- spin 'memory' qubit, using a combination of microwave and radio- frequency pulses applied to P-31 donors in an isotopically pure Si-28 crystal(4,5). The state is left in the nuclear spin on a time-scale that is long compared with the electron decoherence time, and is then coherently transferred back to the electron spin, thus demonstrating the P-31 nuclear spin as a solid-state quantum memory. The overall store - readout fidelity is about 90 per cent, with the loss attributed to imperfect rotations, and can be improved through the use of composite pulses(6). The coherence lifetime of the quantum memory element at 5.5 K exceeds 1 s.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据