4.8 Article

Nanoscale imaging magnetometry with diamond spins under ambient conditions

期刊

NATURE
卷 455, 期 7213, 页码 648-U46

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07278

关键词

-

资金

  1. EU (QAP, EQUIND, NANO4DRUGS, NEDQIT)
  2. DFG (SFB/TR21 and FOR730)
  3. Landesstiftung BW

向作者/读者索取更多资源

Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques(1,2), but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells(3,4), and magnetic resonance force microscopy(5) has succeeded in detecting single electrons(6) and small nuclear spin ensembles(7). However, this technique currently requires cryogenic temperatures, which limit most potential biological applications(8). Alternatively, single-electron spin states can be detected optically(9,10), even at room temperature in some systems(11-14). Here we show how magneto- optical spin detection can be used to determine the location of a spin associated with a single nitrogen- vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen- vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre- scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single- spin imaging at room temperature is far- reaching. It could lead to the capability to probe biologically relevant spins in living cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据