4.8 Article

Bottom-up organic integrated circuits

期刊

NATURE
卷 455, 期 7215, 页码 956-959

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07320

关键词

-

资金

  1. Dutch Polymer Institute [project 516]
  2. EU project NAIMO [NMP4-CT-2004-500355]
  3. Dutch Technology Foundation STW
  4. Austrian Science Foundation

向作者/读者索取更多资源

Self- assembly - the autonomous organization of components into patterns and structures(1) - is a promising technology for the mass production of organic electronics. Making integrated circuits using a bottom- up approach involving self- assembling molecules was proposed(2) in the 1970s. The basic building block of such an integrated circuit is the self- assembled- monolayer field- effect transistor ( SAMFET), where the semiconductor is a monolayer spontaneously formed on the gate dielectric. In the SAMFETs fabricated so far, current modulation has only been observed in submicrometre channels(3-5), the lack of efficient charge transport in longer channels being due to defects and the limited intermolecular pi-pi coupling between the molecules in the self-assembled monolayers. Low field- effect carrier mobility, low yield and poor reproducibility have prohibited the realization of bottom- up integrated circuits. Here we demonstrate SAMFETs with long- range intermolecular pi - pi coupling in the monolayer. We achieve dense packing by using liquid- crystalline molecules consisting of a pi- conjugated mesogenic core separated by a long aliphatic chain from a monofunctionalized anchor group. The resulting SAMFETs exhibit a bulk- like carrier mobility, large current modulation and high reproducibility. As a first step towards functional circuits, we combine the SAMFETs into logic gates as inverters; the small parameter spread then allows us to combine the inverters into ring oscillators. We demonstrate real logic functionality by constructing a 15- bit code generator in which hundreds of SAMFETs are addressed simultaneously. Bridging the gap between discrete monolayer transistors and functional self-assembled integrated circuits puts bottom- up electronics in a new perspective.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据