4.8 Article

Kemp elimination catalysts by computational enzyme design

期刊

NATURE
卷 453, 期 7192, 页码 190-U4

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature06879

关键词

-

向作者/读者索取更多资源

The design of new enzymes for reactions not catalysed by naturally occurring biocatalysts is a challenge for protein engineering and is a critical test of our understanding of enzyme catalysis. Here we describe the computational design of eight enzymes that use two different catalytic motifs to catalyse the Kemp elimination - a model reaction for proton transfer from carbon - with measured rate enhancements of up to 10 5 and multiple turnovers. Mutational analysis confirms that catalysis depends on the computationally designed active sites, and a high- resolution crystal structure suggests that the designs have close to atomic accuracy. Application of in vitro evolution to enhance the computational designs produced a >200-fold increase in k(cat)/K-m (k(cat)/K-m of 2,600 M(-1)s(-1) and k(cat)/k(uncat) of >10(6)). These results demonstrate the power of combining computational protein design with directed evolution for creating new enzymes, and we anticipate the creation of a wide range of useful new catalysts in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据