4.8 Article

Anthropogenically enhanced fluxes of water and carbon from the Mississippi River

期刊

NATURE
卷 451, 期 7177, 页码 449-452

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature06505

关键词

-

向作者/读者索取更多资源

The water and dissolved inorganic carbon exported by rivers are important net fluxes that connect terrestrial and oceanic water and carbon reservoirs(1). For most rivers, the majority of dissolved inorganic carbon is in the form of bicarbonate. The riverine bicarbonate flux originates mainly from the dissolution of rock minerals by soil water carbon dioxide, a process called chemical weathering, which controls the buffering capacity and mineral content of receiving streams and rivers(2). Here we introduce an unprecedented high- temporal- resolution, 100- year data set from the Mississippi River and couple it with sub- watershed and precipitation data to reveal that the large increase in bicarbonate flux that has occurred over the past 50 years ( ref. 3) is clearly anthropogenically driven. We show that the increase in bicarbonate and water fluxes is caused mainly by an increase in discharge from agricultural watersheds that has not been balanced by a rise in precipitation, which is also relevant to nutrient and pesticide fluxes to the Gulf of Mexico. These findings demonstrate that alterations in chemical weathering are relevant to improving contemporary biogeochemical budgets. Furthermore, land use change and management were arguably more important than changes in climate and plant CO2 fertilization to increases in riverine water and carbon export from this large region over the past 50 years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据