4.8 Article

Origin of morphotropic phase boundaries in ferroelectrics

期刊

NATURE
卷 451, 期 7178, 页码 545-U2

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature06459

关键词

-

资金

  1. Direct For Mathematical & Physical Scien
  2. Division Of Materials Research [805056] Funding Source: National Science Foundation

向作者/读者索取更多资源

A piezoelectric material is one that generates a voltage in response to a mechanical strain ( and vice versa). The most useful piezoelectric materials display a transition region in their composition phase diagrams, known as a morphotropic phase boundary(1,2), where the crystal structure changes abruptly and the electromechanical properties are maximal. As a result, modern piezoelectric materials for technological applications are usually complex, engineered, solid solutions, which complicates their manufacture as well as introducing complexity in the study of the microscopic origins of their properties. Here we show that even a pure compound, in this case lead titanate, can display a morphotropic phase boundary under pressure. The results are consistent with first-principles theoretical predictions(3), but show a richer phase diagram than anticipated; moreover, the predicted electromechanical coupling at the transition is larger than any known. Our results show that the high electromechanical coupling in solid solutions with lead titanate is due to tuning of the high- pressure morphotropic phase boundary in pure lead titanate to ambient pressure. We also find that complex microstructures or compositions are not necessary to obtain strong piezoelectricity. This opens the door to the possible discovery of high- performance, pure-compound electromechanical materials, which could greatly decrease costs and expand the utility of piezoelectric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据