4.8 Article

Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning

期刊

NATURE
卷 453, 期 7193, 页码 401-U56

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature06876

关键词

-

资金

  1. NICHD NIH HHS [F32 HD008696-02, F32 HD008696, R01 HD034380-06, R01 HD034380-07, R01 HD034380, F32 HD008696-01, F32 HD008696-03, R01 HD034380-05, R01 HD34380, R01 HD034380-08, R01 HD034380-09] Funding Source: Medline

向作者/读者索取更多资源

Half a century ago, the apical ectodermal ridge (AER) at the distal tip of the tetrapod limb bud was shown to produce signals necessary for development along the proximal-distal (P-D) axis, but how these signals influence limb patterning is still much debated(1,2). Fibroblast growth factor (FGF) gene family members are key AER-derived signals(3,4), with Fgf4, Fgf8, Fgf9 and Fgf17 expressed specifically in the mouse AER(5). Here we demonstrate that mouse limbs lacking Fgf4, Fgf9 and Fgf17 have normal skeletal pattern, indicating that Fgf8 is sufficient among AER-FGFs to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype(6,7); however, when we also removed different combinations of the other AER-FGF genes, we obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate P-D-patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the long-standing hypothesis that AER-FGF signalling is permissive rather than instructive for limb patterning. We discuss how a two-signal model for P-D patterning can be integrated with the concept of early specification to explain the genetic data presented here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据