4.6 Article

Mechanism of long-term toxicity of CuO NPs to microalgae

期刊

NANOTOXICOLOGY
卷 12, 期 8, 页码 923-939

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2018.1498928

关键词

CuO NPs; microalgae; photosynthesis; OEC; ROS

向作者/读者索取更多资源

Little is known regarding the detailed mechanism of CuO NPs' toxicity to microalgal primary metabolism pathway. Photosynthesis and respiration are the most important primary metabolism and the main sources of production of reactive oxygen species (ROS), but the effect of CuO NPs on both of them has not been systematically studied to date. Our research demonstrated that long-term treatment with CuO NPs significantly inhibited activities of photosynthesis and respiration in microalgae, and the photosynthesis was more sensitive to the toxicity of CuO NPs than respiration. CuO NPs could be absorbed by microalgae and be converted into Cu2O NPs concentrated in chloroplast. The internalized Cu, regardless of whether the exposure was Cu2+ or CuO NPs had the same capacity to damage chloroplast structure. The result also shows that the oxygen-evolving complex (OEC) in the photosynthetic electron transport chain was the most sensitive site to CuO NPs and Cu2+-treated microalgae had the same damage site as that of CuO NPs, which may be related to the Mn cluster that is dissociated by Cu ions released from CuO NPs. The damage of OEC inhibited photosynthetic electron transport to increase excess excited energy, which caused the accumulation of ROS in chloroplast. The accumulation of ROS damaged the structure of cell membrane and aggravated the PSII photoinhibition, further decreasing the efficiency of light energy utilization. In conclusion, the Cu ionic toxicity of photosynthetic apparatus by CuO NPs resulted in the carbon starvation and the accumulation of ROS to inhibit the growth of microalgae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据