4.1 Article

Piwi-Pathway Alteration Induces LINE-1 Transposon Derepression and Infertility Development in Cryptorchidism

期刊

SEXUAL DEVELOPMENT
卷 9, 期 2, 页码 98-104

出版社

KARGER
DOI: 10.1159/000375351

关键词

Cell memory; Cryptorchidism; GTSF1; Human; Infertility; LINE-1; Mini-puberty; PIWIL4; Transposon

向作者/读者索取更多资源

Spermatogonia contain processing bodies that harbor P-element-induced wimpy testis (Piwi) proteins. Piwi proteins are associated specifically with Piwi-interacting RNAs to silence transposable DNA elements. Loss-of-function mutations in the Piwi pathway lead to derepression of transposable elements, resulting in defective spermatogenesis. Furthermore, deletion of gametocyte-specific factor 1 (GTSF1), a factor involved in Piwi-mediated transcriptional repression, causes male-specific sterility and derepression of LINE1 (L1) retrotransposons. No previous studies have examined GTSF1, L1 and PIWIL4 expression in cryptorchidism. We examined transposon-silencing genes and L1 transposon expression in testicular biopsies with Affymetrix microarrays and immunohistology. Seven members of the Tudor gene family, 3 members of the DEAD-box RNA helicase family, and the GTSF1 gene were found to show significantly lower RNA signals in the high-infertility-risk group. In the immunohistochemical analysis, patients from the low-infertility-risk group showed coherently stronger staining for GTSF1 and PIWIL4 proteins and weaker staining for L1 transposon when compared to the high-infertility-risk samples. These new findings provide first evidence consistent with the idea that infertility in cryptorchidism is a consequence of alterations in the Piwi pathway and transposon derepression induced by the impaired function of mini-puberty. (C) 2015 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据