4.6 Article

Living' PEGylation on gold nanoparticles to optimize cancer cell uptake by controlling targeting ligand and charge densities

期刊

NANOTECHNOLOGY
卷 24, 期 35, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/24/35/355101

关键词

-

资金

  1. National Institutes of Health [RO1CA120023]
  2. IMRA America, Inc.

向作者/读者索取更多资源

We report and demonstrate biomedical applications of a new technique-'living' PEGylation-that allows control of the density and composition of heterobifunctional PEG (HS-PEG-R; thiol-terminated poly(ethylene glycol)) on gold nanoparticles (AuNPs). We first establish 'living' PEGylation by incubating HS- PEG(5000)-COOH with AuNPs (similar to 20 nm) at increasing molar ratios from zero to 2000. This causes the hydrodynamic layer thickness to differentially increase up to 26 nm. The controlled, gradual increase in PEG-COOH density is revealed after centrifugation, based on the ability to re-suspend the pellet and increase the AuNP absorption. Using a fluorescamine-based assay we quantify differential HS-PEG(5000)-NH2 binding to AuNPs, revealing that it is highly efficient until AuNP saturation is reached. Furthermore, the zeta potential incrementally changes from -44.9 to +52.2 mV and becomes constant upon saturation. Using 'living' PEGylation we prepare AuNPs with different ratios of HS-PEG-RGD (RGD: Arg-Gly-Asp) and incubate them with U-87 MG (malignant glioblastoma) and non-target cells, demonstrating that targeting ligand density is critical to maximizing the efficiency of targeting of AuNPs to cancer cells. We also sequentially control the HS-PEG-R density to develop multifunctional nanoparticles, conjugating positively charged HS-PEG-NH2 at increasing ratios to AuNPs containing negatively charged HS-PEG-COOH to reduce uptake by macrophage cells. This ability to minimize non-specific binding/uptake by healthy cells could further improve targeted nanoparticle efficacy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据