4.6 Article

Dynamic electrostatic force microscopy technique for the study of electrical properties with improved spatial resolution

期刊

NANOTECHNOLOGY
卷 24, 期 22, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/24/22/225703

关键词

-

向作者/读者索取更多资源

The need to resolve the electrical properties of confined structures (CNTs, quantum dots, nanorods, etc) is becoming increasingly important in the field of electronic and optoelectronic devices. Here we propose an approach based on amplitude modulated electrostatic force microscopy to obtain measurements at small tip-sample distances, where highly nonlinear forces are present. We discuss how this improves the lateral resolution of the technique and allows probing of the electrical and surface properties. The complete force field at different tip biases is employed to derive the local work function difference. Then, by appropriately biasing the tip-sample system, short-range forces are reconstructed. The short-range component is then separated from the generic tip-sample force in order to recover the pure electrostatic contribution. This data can be employed to derive the tip-sample capacitance curve and the sample dielectric constant. After presenting a theoretical model that justifies the need for probing the electrical properties of the sample in the vicinity of the surface, the methodology is presented in detail and verified experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据