4.6 Article

Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging

期刊

NANOTECHNOLOGY
卷 23, 期 9, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/23/9/095501

关键词

-

资金

  1. US Army (DOD) [BC074387]

向作者/读者索取更多资源

Fluorophores have been extensively used as the signal mediator in biosensing and bioimaging for a long time. Enhancement of fluorescence can amplify the signal, thus improving the sensitivity, enabling earlier and accurate disease detection and diagnosis. Some metal nanoparticles, such as gold and silver, can generate a strong electromagnetic field on their surface (surface plasmon field) upon receiving photonic energy. When a fluorophore is placed in the field, the field can affect the fluorophore electrons participating in fluorescence emission and change the fluorescence output. The change can be from complete quenching to significant enhancement, depending on the metal type, particle size and shape, excitation/emission wavelengths and quantum yield of the fluorophore, and the distance between the fluorophore and the particle surface. In this study, the effects of these parameters on the fluorescence enhancement of commonly used fluorophores by gold nanoparticles (GNPs) are theoretically analyzed. Experimentally, an NIR contrast agent with enhanced fluorescence was developed by carefully tailoring the distance between Cypate (ICG based fluorophore) and a GNP, via biocompatible spacer constructs. The effect of the GNP size (3.7-16.4 nm) and spacer length (3.2-4.6 nm) on fluorescence enhancement was studied, and the spacer length that provided the significant enhancement was determined. The spacer of 3.9 nm with 16.4 nm GNP provided the fluorescence of 360% of the control. The experimental data qualitatively agreed with the theoretical results and, thus, the theoretical analysis can be used as a guide for significantly improving the sensitivity of existing fluorescent contrast agents by properly utilizing GNPs and spacers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据