4.6 Article

Electrical transport properties of graphene nanoribbons produced from sonicating graphite in solution

期刊

NANOTECHNOLOGY
卷 22, 期 32, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/22/32/325201

关键词

-

资金

  1. Wayne State University

向作者/读者索取更多资源

A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on a silicon substrate, and characterized by Raman spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nanometers and lengths ranging from hundreds of nanometers to 1 mu m were routinely observed. The electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer-electrolyte), which can be attributed to the screening of the charged impurities by the counter ions in the polymer-electrolyte. This finding suggests that the charge transport in these solution produced graphene nanoribbons is largely limited by charge impurity scattering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据