4.6 Article

Switching kinetics of a Cu2S-based gap-type atomic switch

期刊

NANOTECHNOLOGY
卷 22, 期 23, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/22/23/235201

关键词

-

资金

  1. MEXT
  2. JST

向作者/读者索取更多资源

The switching time of a Cu2S-based gap-type atomic switch is investigated as a function of temperature, bias voltage, and initial off-resistance. The gap-type atomic switch is realized using a scanning tunneling microscope (STM), in which the formation and annihilation of a Cu-atom bridge in the vacuum gap between the Cu2S electrode and the Pt tip of the STM are controlled by a solid-electrochemical reaction. Increasing the temperature decreases the switching time exponentially with an activation energy of about 1.38 eV. Increasing the bias voltage also shortens the switching time exponentially, exhibiting a greater exponent for the lower bias than for the higher bias. Furthermore, faster switching has been achieved by decreasing the initial off-resistance between the Cu2S electrode and STM tip. On the basis of these results, we suggest that, in addition to the chemical reaction, the electric field in the vacuum gap plays a significant role in the operation of a gap-type atomic switch. This investigation advances our understanding of the operating mechanism of an atomic switch, which is a new concept for future electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据