4.6 Article

Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres

期刊

NANOTECHNOLOGY
卷 22, 期 30, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/22/30/305610

关键词

-

资金

  1. BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Institute of Biomaterials and Cell Therapy in Gothenburg, Sweden
  2. Swedish Research Council

向作者/读者索取更多资源

It is known that organic species regulate fabrication of hierarchical biological forms via solution methods. However, in this study, we observed that the presence of inorganic ions plays an important role in the formation and regulation of biological spherical hydroxyapatite formation. We present a mineralization method to prepare ion-doped hydroxyapatite spheres with a hierarchical structure that is free of organic surfactants and biological additives. Porous and hollow strontium-doped hydroxyapatite spheres were synthesized via controlling the concentration of strontium ions in a calcium and phosphate buffer solution. Similarly, fluoride and silicon-doped hydroxyapatite spheres were synthesized. While spherical particle formation was attainable at low and high temperature for Sr-doped hydroxyapatite, it was only possible at high temperature in the F/Si-doped system. The presence of inorganic ions not only plays an important role in the formation and regulation of biological spherical hydroxyapatite, but also could introduce pharmaceutical effects as a result of trace element release. Such ion release results showed a sustained release with pH responsive behavior, and significantly influenced the hydroxyapatite re-precipitation. These ion-doped hydroxyapatite spheres with hollow and porous structure could have promising applications as bone/tooth materials, drug delivery systems, and chromatography supports.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据