4.6 Article

The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies

期刊

NANOTECHNOLOGY
卷 21, 期 12, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/21/12/125504

关键词

-

资金

  1. NIH [P41-EB002503, F32-MH079662]
  2. New Jersey Commission on Brain Injury Research [08-3210-BIR-E-1]
  3. NSF [DMI-0507023]

向作者/读者索取更多资源

Neural electrodes are essential tools for the study of the nervous system and related diseases. Low electrode impedance is a figure of merit for sensitive detection of neural electrical activity and numerous studies have aimed to reduce impedance. Unfortunately, most of these efforts have been tethered by a combination of poor functional coating adhesion, complicated fabrication techniques, and poor fabrication repeatability. We address these issues with a facile method for reliably producing multiple-electrode arrays with low impedance by patterning highly adherent nanoporous gold films using conventional microfabrication techniques. The high surface area-to-volume ratio of self-assembled nanoporous gold results in a more than 25-fold improvement in the electrode-electrolyte impedance, where at 1 kHz, 850 k Omega impedance for conventional Au electrodes is reduced to 30 k Omega for nanoporous gold electrodes. Low impedance provides a superior signal-to-noise ratio for detection of neural activity in noisy environments. We systematically studied the effect of film morphology on electrode impedance and successfully recorded field potentials from rat hippocampal slices. Here, we present our fabrication approach, the relationship between film morphology and impedance, and field potential recordings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据