4.6 Article

Local solid-state modification of nanopore surface charges

期刊

NANOTECHNOLOGY
卷 21, 期 33, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/21/33/335703

关键词

-

向作者/读者索取更多资源

Over the last decade, nanopores have emerged as a new and interesting tool for the study of biological macromolecules like proteins and DNA. While biological pores, especially alpha-haemolysin, have been promising for the detection of DNA, their poor chemical stability limits their use. For this reason, researchers are trying to mimic their behaviour using more stable, solid-state nanopores. The most successful tools to fabricate such nanopores use high energy electron or ions beams to drill or reshape holes in very thin membranes. While the resolution of these methods can be very good, they require tools that are not commonly available and tend to damage and charge the nanopore surface. In this work, we show nanopores that have been fabricated using standard micromachining techniques together with EBID, and present a simple model that is used to estimate the surface charge. The results show that EBID with a silicon oxide precursor can be used to tune the nanopore surface and that the surface charge is stable over a wide range of concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据