4.6 Article

Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering

期刊

NANOTECHNOLOGY
卷 21, 期 20, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/21/20/205101

关键词

-

资金

  1. MICINN [BIO2007-61194, BFU2010-17450]
  2. AGAUR [2009SGR-108]
  3. CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) [2008-2011]
  4. Instituto de Salud Carlos III
  5. ICREA ACADEMIA award (Catalonia, Spain)

向作者/读者索取更多资源

A spectrum of materials for biomedical applications is produced in bacteria, and some of them, such as metals or polyhydroxyalkanoates, are straightforwardly obtained as particulate entities. We have explored the biofabrication process of bacterial inclusion bodies, particulate proteinaceous materials (ranging from 50 to 500 nm in diameter) recently recognized as suitable for surface topographical modification and tissue engineering. Inclusion bodies have been widely described as spherical or pseudo-spherical particles with only minor morphological variability, mostly restricted to their size. Here we have identified a cellular gene in Escherichia coli (clpP) that controls the in vivo fabrication process of inclusion bodies. In the absence of the encoded protease, the dynamics of protein deposition is perturbed, resulting in unusual tear-shaped particles with enhanced surface-volume ratios. This fact modifies the ability of inclusion bodies to promote mammalian cell attachment and differentiation upon surface decoration. The implications of the genetic control of inclusion body geometry are discussed in the context of their biological fabrication and regarding the biomedical potential of these protein clusters in regenerative medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据