4.7 Article

Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 156, 期 -, 页码 299-310

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2015.10.015

关键词

Emulsion polyvinyl chloride; ZnO; Nanocomposite membrane; Ultrafiltration; Antifouling

向作者/读者索取更多资源

In this study, modification of polyvinyl chloride (PVC) ultrafiltration membranes with zinc oxide (ZnO) nanoparticle addition was taken into consideration. The ZnO at five different weights was added to the polymeric solution, and the membranes were fabricated by the phase inversion method using water as a nonsolvent and PEG 6 kDa as a pore former additive. The results showed that the pure water flux of the modified membranes increased up to 3 wt% ZnO addition, which was the optimized amount of the nanoparticle addition in this study. Also, at 3 wt% ZnO addition, flux recovery ratio reached from 69% to above 90%, indicated that the nanocomposite membranes were less susceptible to be fouled. BSA rejection of the membranes also enhanced up to 97% by 3 wt% ZnO addition. The membranes were further characterized by SEM images and remarkable changes in their morphologies were observed, and they became more porous with higher interconnectivity between the pores. Furthermore, EDAX analysis was applied to study ZnO dispersion in the membrane structure and except for 4 wt% ZnO addition which particles aggregation was noticeable, ZnO was dispersed finely in the membrane structure. In addition, the modified membranes had higher hydrophilicity and lower contact angle that was effective to obtain higher water flux. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据