4.6 Article

Interfacial energy levels and related properties of atomic-layer-deposited Al2O3 films on nanoporous TiO2 electrodes of dye-sensitized solar cells

期刊

NANOTECHNOLOGY
卷 20, 期 30, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/30/305201

关键词

-

资金

  1. Ministry of Economic Affairs of Taiwan/ROC
  2. Microstructure and Characterization Laboratory (MCL/ITRI Taiwan)

向作者/读者索取更多资源

Low-temperature (similar to 150 degrees C), atomic-layer-deposited Al2O3 films on nanoporous TiO2 electrodes of dye-sensitized solar cells (DSSCs) were investigated using electron spectroscopy. The power conversion efficiency (PCE) of the DSSCs was increased from 5.7% to 6.5%, an improvement of 14%, with one monolayer of Al2O3 with a thickness of similar to 0.2 nm. The formation of Ti-O-Al(OH)(2) and interfacial dipole layers exhibited a strong influence on the work function of the Al2O3 over-layers, while the thicker Al2O3 over-layers caused the values of valence band maximum and band gap to approach the values associated with pure Al2O3. A work function difference (Delta Phi(A-T)) of 0.4 eV and a recombination barrier height (epsilon(RB)) of 0.1 eV were associated with the highest PCE achieved by the first monolayer of the Al2O3 layer. Thicker Al2O3 over-layers, however, caused significant reduction of PCE with negative Delta Phi(T-A) and increased interfacial energy barrier height (*epsilon(IB)) between the N719 dyes and TiO2 electrodes. It was concluded that the PCE of the DSSCs may correlate with Delta Phi(A-T), epsilon(RB), and *epsilon(IB) resulting from various thicknesses of the Al2O3 over-layers and that interfacial reactions, such as the formation of Ti-O-Al(OH)(2) and dipole layers, play an important role in determining the interfacial energy levels required to achieve optimal performance of dye-sensitized TiO2 solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据