4.6 Article

The photochemical growth of silver nanoparticles on semiconductor surfaces-initial nucleation stage

期刊

NANOTECHNOLOGY
卷 20, 期 11, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/11/115604

关键词

-

向作者/读者索取更多资源

Questions surrounding the nucleation mechanism for nanostructures that are grown on semiconductors, such as lead zirconate titanate, using photochemical techniques have ranged from 'What is the nucleation process?' to 'Is it possible to produce homogeneous nanoscale patterns?'. Here we demonstrate that nucleation occurs at discrete locations on the surface of the substrate that are indicative of a disruption of the local Stern layer due to a local defect or electric field in the substrate. The band diagram for the system is such that when a cluster forms it is possible for electrons to migrate into the silver metal and so replace the surface positive charge, associated with the positive domain of the ferroelectric, with a local negative charge. Once the initial cluster starts to form, the rate of growth of an individual cluster increases due to a restructuring of the Stern layer and increased probability of reaction of an electron with the cations in solution. We show that the nucleation density does not change significantly from the initial nucleation density, and that approximately 15% of the particles that form on the surface are 50% larger than the other particles. The reasons for no significant change in nucleation density stem from the concentration of available disrupted locations in the Stern layer, and variations in the growth rate are discussed in terms of the local electric field and defect influences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据