4.6 Article

Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays

期刊

NANOTECHNOLOGY
卷 20, 期 22, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/22/225701

关键词

-

资金

  1. National Science Foundation of China [50872026, 50602011]
  2. Science Foundation of Heilongjiang Province [E200517]
  3. Centre for Chemical Physics (University of Western Ontario, Canada)

向作者/读者索取更多资源

Nanostructured amorphous and anatase TiO2 are both considered as high rate Li-insertion/extraction electrode materials. To clarify which phase is more desirable for lithium ion batteries with both high power and high density, we compare the electrochemical properties of anatase and amorphous TiO2 by using anodic TiO2 nanotube arrays (ATNTAs) as electrodes. With the same morphological features, the rate capacity of nanostructured amorphous TiO2 is higher than that of nanostructured anatase TiO2 due to the higher Li-diffusion coefficient of amorphous TiO2 as proved by the electrochemical impedance spectra of an amorphous and an anatase ATNTA electrode. The electrochemical impedance spectra also prove that the electronic conductivity of amorphous TiO2 is lower than that of anatase TiO2. These results are helpful in the structural and componential design of all TiO2 mesoporous structures as anode material in lithium ion batteries. Moreover, all the advantages of the amorphous ATNTA electrode including high rate capacity, desirable cycling performance and the simplicity of its fabrication process indicate that amorphous ATNTA is potentially useful as the anode for lithium ion batteries with both high power and high energy density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据