4.6 Article

Modifying the surface charge of single track-etched conical nanopores in polyimide

期刊

NANOTECHNOLOGY
卷 19, 期 8, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/19/8/085713

关键词

-

向作者/读者索取更多资源

Chemical modification of nanopore surfaces is of great interest as it means that the surface composition is no longer fixed by the choice of substrate material, even to the point where large biomolecules can be attached to the pore walls. Controlling nanopore transport characteristics is one important application of surface modification which is very relevant given the significant interest in sensors based on the transport of ions and molecules through nanopores. Reported here is a method to change the surface charge polarity of single track-etched conical nanopores in polyimide, which also has the potential to attach more complex molecules to the carboxyl groups on the nanopore walls. These carboxyl groups were converted into terminal amino groups, first by activation with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N- hydroxysuccinimide (NHS) followed by the covalent coupling of ethylenediamine. This results in a changed surface charge polarity. Regeneration of a carboxyl-terminated surface was also possible, by reaction of the amino groups with succinic anhydride. The success of these reactions was confirmed by measurements of the pore's pH sensitive current-voltage ( I-V) characteristics before and after the chemical modification, which depend on surface charge. The permselectivity of the pores also changed accordingly with the modification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据