4.6 Article

On the solution self-assembly of nanocolloidal brushes: insights from simulations

期刊

NANOTECHNOLOGY
卷 19, 期 44, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/0957-4484/19/44/445606

关键词

-

向作者/读者索取更多资源

The synthesis of novel nanoparticles with exceptional properties continues to stimulate the search for advanced applications in fields as diverse as solar energy harvesting and polymer reinforcement. It is widely recognized that to practically exploit the promised benefits it is necessary to guide the assembly of the various nanoparticles into well-defined supra-molecular structures. Towards this goal, we report Monte Carlo simulation results for the self-assembly of spherical nanoparticles in implicit solvent. The nanoparticles interact solely via dispersive interactions, modeled as square-well potentials. To control the morphology of the self-assembled aggregates, side chains are grafted on specific locations on the nanoparticle surface (i.e., on the equator, on the tropics, on the entire tropical region, or uniformly on the nanoparticle surface). The results are discussed in terms of average cluster size, probability of observing aggregates of given size, and aggregate radius of gyration and asphericity as a function of the aggregate size. The parameters of interest are the solution conditions and the nanoparticle volume fraction (always in the dilute regime). As shown in previous reports (e. g., Striolo 2007 Small 3 628), the nanoparticles form insoluble agglomerates in the absence of the side chains. When the side chains are long and uniformly distributed on the nanoparticles, these remain individually dispersed in solution. More importantly, when the side chains are grafted on selected locations on the nanoparticles, these self-assemble, yielding structures composed of up to 7-10 nanoparticles. The number of grafted side chains is the parameter that predominantly determines the average aggregate size, while the aggregate morphology can be tuned by appropriately controlling the distribution and length of the grafted side chains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据