4.6 Article

The effects of oxygen on the surface passivation of InP nanowires

期刊

NANOTECHNOLOGY
卷 19, 期 6, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/19/6/065203

关键词

-

向作者/读者索取更多资源

The effects of surface passivation on the electronic and structural properties of InP nanowires have been investigated by first-principles calculations. We compare the properties of nanowires whose surfaces have been passivated in several ways, always by H atoms and OH radicals. Taking as the initial reference nanowires that are fully passivated by H atoms, we find that the exchange of these atoms at the surface by OH radicals is always energetically favorable. A nanowire fully passivated by OH radicals is about 2.5 eV per passivated dangling bond more stable than a nanowire fully passivated by H atoms. However, the energetically most stable passivated surface is predicted to have all In atoms bonded to OH radicals and all P atoms bonded to H atoms. This mixed passivation is 2.66 eV per passivated dangling bond more stable than a nanowire fully passivated by H atoms. Our results show that, in comparison with the fully H-saturated nanowire, the fully OH-saturated nanowire has a smaller energy band gap and localized states near the energy band edges. Also, more interestingly, concerning optical applications, the most stable H + OH passivated nanowire has a well-defined energy band gap, only 10% smaller than the H-saturated nanowire energy gap, and few localized states always close to the valence band maximum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据