4.3 Article

Strain-Tunable Electronic Properties and Band Alignments in GaTe/C2N Heterostructure: a First-Principles Calculation

期刊

NANOSCALE RESEARCH LETTERS
卷 13, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1186/s11671-018-2708-x

关键词

GaTe/C2N; Heterostructure; Density functional theory; Strains; Multifunctional devices

资金

  1. National Natural Science Foundation of China [11174220, 11374226, 11804081]
  2. Key Scientific Research Project of the Henan Institutions of Higher Learning [16A140009, 18A140018]
  3. Key Research Project for the Universities of Henan Province [19A140009]
  4. Doctoral Foundation of Henan Polytechnic University [B2015-46, B2018-38]

向作者/读者索取更多资源

Recently, GaTe and C2N monolayers have been successfully synthesized and show fascinating electronic and optical properties. Such hybrid of GaTe with C2N may induce new novel physical properties. In this work, we perform ab initio simulations on the structural, electronic, and optical properties of the GaTe/C2N van der Waals (vdW) heterostructure. Our calculations show that the GaTe/C2N vdW heterostructure is an indirect-gap semiconductor with type-II band alignment, facilitating an effective separation of photogenerated carriers. Intriguingly, it also presents enhanced visible-UV light absorption compared to its components and can be tailored to be a good photocatalyst for water splitting at certain pH by applying vertical strains. Further, we explore specifically the adsorption and decomposition of water molecules on the surface of C2N layer in the heterostructure and the subsequent formation of hydrogen, which reveals the mechanism of photocatalytic hydrogen production on the 2D GaTe/C2N heterostructure. Moreover, it is found that in-plane biaxial strains can induce indirect-direct-indirect, semiconductor-metal, and type II to type I or type III transitions. These interesting results make the GaTe/C2N vdW heterostructure a promising candidate for applications in next generation of multifunctional optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据