4.8 Article

Origin of hydration lubrication of zwitterions on graphene

期刊

NANOSCALE
卷 10, 期 35, 页码 16887-16894

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr05724a

关键词

-

资金

  1. National Natural Science Foundation of China [51775295, 51405256, 51527901]

向作者/读者索取更多资源

Formation of a hydration layer on charge sites can support normal pressure, and meanwhile it retains excellent fluidity to provide efficient boundary lubrication; however, it is limited to the sliding system between two similarly charged surfaces. In the present study, we report extremely low friction as the zwitterions in a lipid bilayer slide on the topmost graphene layer of graphite across pure water, with the friction coefficient falling to the level of 0.001, which provides direct evidence that hydration lubrication is effective even between such dissimilar surfaces. The origin of hydration lubrication on graphene was studied by atomic force microscopy and molecular dynamics simulation simultaneously. It reveals that a subnanometer hydration layer is confined between zwitterions and graphene, which remains as a liquid phase under normal pressure. The shear occurs between water molecules and graphene because of the extremely low shear strength of the water/graphene interface, which contributes to extremely low friction. Our finding demonstrates that the formation of a hydration layer is possible to lubricate layered materials efficiently, which has potential implications for designing efficient boundary lubrication with layered materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据