4.8 Article

Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration

期刊

NANOSCALE
卷 10, 期 37, 页码 17671-17682

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr04287j

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canadian Institutes of Health Research (CIHR)
  3. Alberta Innovates-Technology Futures (AITF)

向作者/读者索取更多资源

Cell entry of polynucleotide-based therapeutic agents can be facilitated by nanoparticle (NP) mediated delivery. In this work, using steered molecular dynamics simulations, we simulated the membrane penetration process of a NP formed by 2 short interfering RNA (siRNA) and 6 polyethylenimine (PEI) molecules. To the best of our knowledge, this is the first set of simulations that explore the direct penetration of an siRNA/PEI NP through a membrane at an all-atom scale. Three types of PEI molecules were used for NP formation: a native PEI, a PEI modified with caprylic acids and a PEI modified with linoleic acids. We found that hydrogen bond formation between the PEIs and the membrane did not lead to instability of the siRNA/PEI NPs during the internalization process. Instead, our results suggested adoption of a self-protecting configuration by the siRNA/PEI NP during membrane penetration, where the siRNA/PEI NP becomes more compact and siRNAs become aligned, leading to more stable configurations while detaching from the membrane. The siRNA/PEI NP modified with linoleic acid showed the smallest structural change due to its strong intra-particle lipid associations and the resulting rigidity, while NP modified with caprylic acid showed the largest structural changes. Our observations provide unique insight into the structural changes of siRNA/PEI NPs when crossing the cell membrane, which can be important for the design of new NP carriers for nucleic acid delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据