4.8 Article

Molecular detection by liquid gated Hall effect measurements of graphene

期刊

NANOSCALE
卷 10, 期 3, 页码 930-935

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr06330j

关键词

-

向作者/读者索取更多资源

Conventional electrical biosensing techniques include Cyclic Voltammetry (CV, amperometric) and ion-sensitive field effect transistors (ISFETs, potentiometric). However, CV is not able to detect electrochemically inactive molecules where there is no redox reaction in solution, and the resistance change in pristine ISFETs in response to low concentration solutions is not observable. Here, we show a very sensitive label-free biosensing method using Hall effect measurements on unfunctionalized graphene devices where the gate electrode is immersed in the solution containing the analyte of interest. This liquid gated Hall effect measurement (LGHM) technique is independent of redox reactions, and it enables the extraction of additional information regarding electrical properties from graphene as compared with ISFETs, which can be used to improve the sensitivity. We demonstrate that LGHM has a higher sensitivity than conventional biosensing methods for L-histidine in the pM range. The detection mechanism is proposed to be based on the interaction between the ions and graphene. The ions could induce asymmetry in electron-hole mobility and inhomogeneity in graphene, and they may also respond to the Hall effect measurement. Moreover, the calculation of capacitance values shows that the electrical double layer capacitance is dominant at relatively high gate voltages in our system, and this is useful for applications including biosensing, energy storage, and neural stimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据