4.8 Article

Remarkable long-term stability of nanoconfined metal-halide perovskite crystals against degradation and polymorph transitions

期刊

NANOSCALE
卷 10, 期 17, 页码 8320-8328

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr01352g

关键词

-

资金

  1. National Science Foundation [CRIF/CHE-0840277]
  2. NSF MRSEC Program [DMR-0820341]
  3. NSF [ECCS-MRI-1531237]

向作者/读者索取更多资源

Metal-halide perovskites are promising candidates to advance optoelectronic devices but are known to suffer from rapid material degradation. Here we demonstrate that nanoconfinement is an effective strategy for the long-term stabilization of metal-halide perovskite MAPbI(3) crystals against humidity-induced degradation and temperature-induced polymorph transitions. Two-dimensional X-ray diffraction patterns of MAPbI(3) films reveal an unprecedented air-stability of up to 594 days in non-chemically modified, non-passivated MAPbI(3) films deposited on substrates imposing complete 2D confinement on the tens of nanometers length scale. Temperature-dependent X-ray diffraction analysis and optical spectroscopy further reveal the suppression of temperature-dependent phase transitions in nanoconfined MAPbI(3) crystals. Most notably, the high-temperature cubic phase of MAPbI(3), typically stable at temperatures above 327 K, remains present until a temperature of 170 K when the perovskite crystals are nanoconfined within the 100 nm diameter pores of anodized aluminum oxide templates. Photoluminescence mapping confirms that nanoconfined MAPbI(3) crystals exhibit spatial uniformity on the tens of microns length scale, suggesting that nanoconfinement is an effective strategy for the formation of high-quality, stable MAPbI(3) crystals across large areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据