4.8 Article

Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li-S batteries

期刊

NANOSCALE
卷 10, 期 1, 页码 386-395

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr06731c

关键词

-

资金

  1. National Science Foundation of China [51602009]
  2. Postdoctoral Science Foundation [2016M600008]
  3. National Materials Genome Project [2016YFB0700600]
  4. Shenzhen Science and Technology Research Grant [JCYJ20150729111733470, JCYJ2015 1015162256516]
  5. Natural Science Foundation of Guangdong Province [2015A030310138]

向作者/读者索取更多资源

Functional porous carbon materials are widely used to solve the low conductivity and shuttle effect of LiS batteries; however, the common carbon/sulfur composite electrodes based on traditional technology (with conducting agents and binders) make it difficult for a battery to work stably at an ultra-high sulfur loading of 10 mg cm(-2). Herein, an appropriate content of sulfur was injected into a pomegranate-like structure self-assembled with nanohollows (PSSN) of N-graphene. The Li-PSSN/S battery based on traditional technology displays a large-capacity, high-rate and long-life at an ultra-high areal-sulfur loading of 10.1 mg cm(-2). The excellent performance with ultra-high areal-sulfur loading can be attributed to the hierarchal nanohollows with graphene-shells being in close contact to build a 3D-electronic conduction network and promoting electrolyte adsorption into the entire electrode to maintain rapid Li-ion transport, while stopping the shuttle-effect via the strong interaction of polysulfide with the doped N elements on graphene-shells. In addition, the exact sulfur content can provide just enough space to maintain the huge volume change and constant thickness of the S-electrodes during the charge-discharge process to enhance the cycling stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据