4.8 Article

Interface engineered in situ anchoring of Co9S8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries

期刊

NANOSCALE
卷 10, 期 5, 页码 2649-2657

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr07235j

关键词

-

资金

  1. NSFC [21425102, 21473202, 21521061, 21673238]
  2. Chinese Academy of Sciences [XDB20000000]

向作者/读者索取更多资源

Interface modification is an effective and promising route for developing functional electrocatalysts. However, researchers have not created a reliable method to optimize the interfaces of components existing in electrocatalysts, although it is very crucial for the technological development of high-performance electrodes. Here, we develop a strategy aiming at the in situ anchorage of Co9S8 nanoparticles into a nitrogen (N), sulfur (S) co-implanted three-dimensional carbon matrix (Co9S8@NSCM) as a highly active and durable nonprecious metal electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. This strategy offers an opportunity to optimize the interface interaction and affords high activity for the ORR and OER in terms of low overpotentials and high current intensities. In addition, by confining Co9S8 nanoparticles into a N,S-doped carbon matrix, corrosion and aggregation can be effectively prevented, and thus the catalyst exhibits nearly unfading ORR catalytic performance after 100 000 s testing, a low discharge-charge voltage gap (0.81 V) and a long cycle life (up to 840 cycles) in Zn-air batteries. The present work highlights potentially powerful interface engineering for designing multi-component heterostructures with advanced performances in oxygen electrochemistry and related energy conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据