4.8 Article

A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration

期刊

NANOSCALE
卷 10, 期 21, 页码 9935-9948

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr00640g

关键词

-

资金

  1. Fundamental Research Funds for the Central Universities [2012017yjsy209]
  2. National Natural Science Foundation of China [81773658, 81703450]

向作者/读者索取更多资源

The complex tumor microenvironment (TME) in solid tumors forms physiological barriers to the efficient delivery of nanomedicine, leading to limited therapeutic efficacy. Herein, to overcome these physiological barriers and improve the therapeutic effect, we constructed a novel size-adjustable nanoplatform for efficient drug delivery into solid tumors. The smart size-switchable nanoplatform (DGL/DOX@PP) was prepared by conjugating small dendrigraft poly-l-lysine (DGL) to poly(ethylene glycol)-poly(caprolactone) micelles via a matrix metalloproteinase 2 (MMP-2)-sensitive peptide. DGL/DOX@PP had an initial size of 100 nm and a nearly neutral charge, rendering the system able to take advantage of the enhanced permeability and retention effect. After extravasation from the tumor vessels, small DGL/DOX nanoparticles (approximate to 30 nm) were rapidly released from DGL/DOX@PP in response to MMP-2 in the TME. This process of particle size alteration greatly enhanced the nanoparticle penetration into both multicellular spheroids (MCSs) and solid tumors. In vivo results demonstrated that compared with small and non-switchable nanoparticles, particles from the size-switchable nanoplatform achieved excellent antitumor efficacy in 4T1 tumor-bearing mice. This size-adjustable nanoplatform provides a multifunctional strategy for TME modulation and tumor penetration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据