4.8 Article

Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots

期刊

NANOSCALE
卷 6, 期 1, 页码 300-307

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr04319c

关键词

-

资金

  1. National Natural Science Foundation of China [11274304, 11204298, 61106066, 61205025, 21101038]

向作者/读者索取更多资源

The thermal stability of luminescence is important for the application of quantum dots (QDs) in lightemitting devices. The temperature-dependent photoluminescence (PL) intensities and decay times of Mn-doped ZnS, ZnSe, and ZnSeS alloyed core-shell QD films were studied in the temperature range from 80 to 500 K by steady-state and time-resolved PL spectroscopy. It was found that the thermal stability of Mn-doped QD emissions was significantly dependent on the shell thickness and the host bandgap, which was higher than that of workhorse CdSe QDs. Nearly no PL quenching took place in Mn: ZnS QDs with a thick ZnS shell, which kept a high PL quantum yield (QY) of similar to 50% even at 500 K; and the thermally stable PL was also observed in highly luminescent Mn: ZnSe and Mn: ZnSeS QDs with a quenching temperature over 200 degrees C. Further, the stability of Mn-doped QDs with different shell thickness at high temperature was also examined through heating-cooling cycling experiments. The PL quenching in the thick shell-coated Mn-doped QDs was almost totally recovered. The PL quenching mechanisms of the Mn2+ ion emissions were discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据