4.8 Review

Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange

期刊

NANOSCALE
卷 6, 期 21, 页码 12195-12216

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr02025a

关键词

-

资金

  1. National Science Foundation [DMR-1056653]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1056653] Funding Source: National Science Foundation

向作者/读者索取更多资源

Conversion chemistry is a rapidly maturing field, where chemical conversion of template nanoparticles (NPs) into new compositions is often accompanied by morphological changes, such as void formation. The principles and examples of three major classes of conversion chemical reactions are reviewed: the Kirkendall effect for metal NPs, galvanic exchange, and anion exchange, each of which can result in void formation in NPs. These reactions can be used to obtain complex structures that may not be attainable by other methods. During each kind of conversion chemical reaction, NPs undergo distinct chemical and morphological changes, and insights into the mechanisms of these reactions will allow for improved fine control and prediction of the structures of intermediates and products. Conversion of metal NPs into oxides, phosphides, sulphides, and selenides often occurs through the Kirkendall effect, where outward diffusion of metal atoms from the core is faster than inward diffusion of reactive species, resulting in void formation. In galvanic exchange reactions, metal NPs react with noble metal salts, where a redox reaction favours reduction and deposition of the noble metal (alloying) and oxidation and dissolution of the template metal (dealloying). In anion exchange reactions, addition of certain kinds of anions to solutions containing metal compound NPs drives anion exchange, which often results in significant morphological changes due to the large size of anions compared to cations. Conversion chemistry thus allows for the formation of NPs with complex compositions and structures, for which numerous applications are anticipated arising from their novel catalytic, electronic, optical, magnetic, and electrochemical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据