4.8 Article

Multiscale modeling of thermal conductivity of polycrystalline graphene sheets

期刊

NANOSCALE
卷 6, 期 6, 页码 3344-3352

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr06388g

关键词

-

资金

  1. European Union (ERDF)
  2. Free State of Saxony via TP A2 (MolFunc/MolDiagnosik) of the Cluster of Excellence European Center for Emerging Materials and Processes Dresden (ECEMP)
  3. Saxon State Ministry of Science and Arts
  4. Center for Advancing Electronics Dresden

向作者/读者索取更多资源

We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据