4.8 Article

Cu2-xSe@mSiO(2)-PEG core-shell nanoparticles: a low-toxic and efficient difunctional nanoplatform for chemo-photothermal therapy under near infrared light radiation with a safe power density

期刊

NANOSCALE
卷 6, 期 8, 页码 4361-4370

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr06160d

关键词

-

资金

  1. National Natural Science Foundation of China [21171035, 51302035]
  2. Key Grant Project of Chinese Ministry of Education [313015]
  3. PhD Programs Foundation of the Ministry of Education of China [20110075110008, 20130075120001]
  4. National 863 Program of China [2013AA031903]
  5. Science and Technology Commission of Shanghai Municipality [13ZR1451200]
  6. Fundamental Research Funds for the Central Universities
  7. Program for Changjiang Scholars and Innovative Research Team in University [IRT1221]
  8. Shanghai Leading Academic Discipline Project [B603]
  9. Program of Introducing Talents of Discipline to Universities [111-2-04]

向作者/读者索取更多资源

A low-toxic difunctional nanoplatform integrating both photothermal therapy and chemotherapy for killing cancer cells using Cu2-xSe@mSiO(2)-PEG core-shell nanoparticles is reported. Silica coating and further PEG modification improve the hydrophilicity and biocompatibility of copper selenide nanoparticles. As-prepared Cu2-xSe@mSiO(2)-PEG nanoparticles not only display strong near infrared (NIR) region absorption and good photothermal effect, but also exhibit excellent biocompatibility. The mesoporous silica shell is provided as the carrier for loading the anticancer drug, doxorubicin (DOX). Moreover, the release of DOX from Cu2-xSe@mSiO(2)-PEG core-shell nanoparticles can be triggered by pH and NIR light, resulting in a synergistic effect for killing cancer cells. Importantly, the combination of photothermal therapy and chemotherapy driven by NIR radiation with safe power density significantly improves the therapeutic efficacy, and demonstrates better therapeutic effects for cancer treatment than individual therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据