4.8 Article

Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode

期刊

NANOSCALE
卷 6, 期 10, 页码 5545-5550

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr00046c

关键词

-

资金

  1. Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences

向作者/读者索取更多资源

The interplay between ions and solvent molecules inside the nanoporous electrodes of a supercapacitor has not been well understood but could be a fertile ground for new insights into the device's performance. By tuning the dipole moment of the solvent in an organic electrolyte, we find, from classical density functional theory calculations, pronounced oscillation of capacitance with the pore size for a moderately to weakly polar solvent. A quantitative analysis of the electric-double-layer (EDL) structure indicates that the capacitance oscillation shares a similar physical origin to that of an ionic liquid electrolyte: the oscillatory behavior arises from the formation of alternating layers of counterions and coions near strongly charged surfaces. More interestingly, we find that in the large-pore region, the capacitance versus the pore size has a volcano-shaped trend; in other words, there exists a solvent dipole moment that yields a maximal capacitance. These theoretical predictions can be validated with future experiments and highlight the great potential in tuning the organic solvent to achieve optimal performance of EDL capacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据