4.8 Article

Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts

期刊

NANOSCALE
卷 6, 期 21, 页码 13179-13187

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr03578j

关键词

-

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India [CSC0122]

向作者/读者索取更多资源

Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N, and C, the overall integrity of the structure and its intra-molecular connectivity within the framework help in achieving better oxygen evolution characteristics at a significantly reduced overpotential. The engineered Ni-NGr nanocage displays a substantially low overpotential of similar to 290 mV at a practical current density of 20 mA cm(-2) in 0.1 M KOH. In comparison, NGr and Ni-particles as separate entities give overpotentials of similar to 570 and similar to 370 mV under similar conditions. Moreover, the long term stability of Ni-NGr was investigated by anodic potential cycling for 500 cycles and an 8.5% increment in the overpotential at 20 mA cm(-2) was observed. Additionally, a chronoamperometric test was performed for 15 h at 20 mA cm(-2), which highlights the better sustainability of Ni-NGr under the actual operating conditions. Finally, the quantitative estimation of evolved oxygen was monitored by gas chromatography and was found to be 70 mmol h(-1) g(-1) of oxygen, which is constant in the second cycle as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据