4.8 Article

Multiprotocol-induced plasticity in artificial synapses

期刊

NANOSCALE
卷 6, 期 24, 页码 15151-15160

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr03405h

关键词

-

资金

  1. Korea Institute of Science and Technology [2Z04030]
  2. Australian Research Council (ARC) from the University of Melbourne [DP140103448]

向作者/读者索取更多资源

We suggest a 'universal' electrical circuit for the realization of an artificial synapse that exhibits long-term plasticity induced by different protocols. The long-term plasticity of the artificial synapse is basically attributed to the nonvolatile resistance change of the bipolar resistive switch in the circuit. The synaptic behaviour realized by the circuit is termed 'universal' inasmuch as (i) the shape of the action potential is not required to vary so as to implement different plasticity-induction behaviours, activity-dependent plasticity (ADP) and spike-timing-dependent plasticity (STDP), (ii) the behaviours satisfy several essential features of a biological chemical synapse including firing-rate and spike-timing encoding and unidirectional synaptic transmission, and (iii) both excitatory and inhibitory synapses can be realized using the same circuit but different diode polarity in the circuit. The feasibility of the suggested circuit as an artificial synapse is demonstrated by conducting circuit calculations and the calculation results are introduced in comparison with biological chemical synapses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据