4.8 Article

Simple approach to reinforce hydrogels with cellulose nanocrystals

期刊

NANOSCALE
卷 6, 期 11, 页码 5934-5943

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr01214c

关键词

-

资金

  1. Fundamental Research Funds for the Central Universities [TD2011-10]
  2. Beijing Forestry University Young Scientist Fund [BLX2011010]
  3. Research Fund for the Doctoral Program of Higher Education of China [20120014120006]
  4. Chinese Ministry of Education [113014A]

向作者/读者索取更多资源

The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network theological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据